7. Khafizova AA, Galimov AM, Kharisova SR, Grebenshchikova LY, Yagudina RI, Smirnova LM. The impact of healthcare digitalization on the medical education curricula and programs: points of convergence and divergence. Contemp Educ Technol. 2023;15(4):ep479.
https://doi.org/10.30935/cedtech/13768
11. Hong H, Kang Y, Kim Y, Kim B. Application of artificial intelligence in medical education: focus on the application of ChatGPT for clinical medical education. J Med Life Sci. 2023;20(2):53-9.
https://doi.org/10.22730/jmls.2023.20.2.53
14. Hamilton ER, Rosenberg JM, Akcaoglu M. The substitution augmentation modification redefinition (SAMR) model: a critical review and suggestions for its use. TechTrends. 2016;60:433-41.
https://doi.org/10.1007/s11528-016-0091-y
16. Vrana J, Singh R. Digitization, digitalization, and digital transformation. In: Meyendorf N, Ida N, Singh R, Vrana J, editors. Handbook of nondestructive evaluation 4.0. Cham: Springer; 2021. p. 1-17.
https://doi.org/10.1007/978-3-030-48200-8_39-1
17. Gradillas M, Thomas LD. Distinguishing digitization and digitalization: a systematic review and conceptual framework. J Prod Innov Manag. 2025;42(1):112-43.
https://doi.org/10.1111/jpim.12690
18. Yu SH, Yang JM, Kim HK. A study of hospital utilization by the cost of care to patients in a private university hospital in Seoul, Republic of Korea, 1955--1974. Yonsei Med J. 1977;18(2):166-89.
https://doi.org/10.3349/ymj.1977.18.2.166
20. Trelease RB. From chalkboard, slides, and paper to e-learning: How computing technologies have transformed anatomical sciences education. Anat Sci Educ. 2016;9(6):583-602.
https://doi.org/10.1002/ase.1620
21. Poljanowicz W, Mrugacz G, Szuminski M, Latosiewicz R, Bakunowicz-Lazarczyk A, Bryl A, et al. Assessment of the effectiveness of medical education on the Moodle e-learning platform. Stud Log Gramm Rhetor. 2013;35(1):203-14.
https://doi.org/10.2478/slgr-2013-0037
24. Dror I, Schmidt P, O’Connor L. A cognitive perspective on technology enhanced learning in medical training: great opportunities, pitfalls and challenges. Med Teach. 2011;33(4):291-6.
https://doi.org/10.3109/0142159X.2011.550970
26. Phuong TT, Nguyen TT, Danh NN, Van DN, Luong HD, Tran T. Digital transformation in education: a bibliometric analysis using Scopus. Eur Sci Ed. 2023;49:e107138.
https://doi.org/10.3897/ese.2023.e107138
28. Lucas HC, Upperman JS, Robinson JR. A systematic review of large language models and their implications in medical education. Med Educ. 2024;58(11):1276-85.
https://doi.org/10.1111/medu.15402
31. Fernandes CW, Rafatirad S, Sayadi H. Advancing personalized and adaptive learning experience in education with artificial intelligence. Proceedings of the 2023 32nd Annual Conference of the European Association for Education in Electrical and Information Engineering (EAEEIE); 2023 Jun 14-16; Eindhoven, The Netherlands. Piscataway (NJ): IEEE; 2023. p. 1-6.
https://doi.org/10.23919/EAEEIE55804.2023.10181336
33. Stepan K, Zeiger J, Hanchuk S, Del Signore A, Shrivastava R, Govindaraj S, et al. Immersive virtual reality as a teaching tool for neuroanatomy. Int Forum Allergy Rhinol. 2017;7(10):1006-13.
https://doi.org/10.1002/alr.21986
34. Lo S, Abaker AS, Quondamatteo F, Clancy J, Rea P, Marriott M, et al. Use of a virtual 3D anterolateral thigh model in medical education: augmentation and not replacement of traditional teaching? J Plast Reconstr Aesthet Surg. 2020;73(2):269-75.
https://doi.org/10.1016/j.bjps.2019.09.034
35. Maresky HS, Oikonomou A, Ali I, Ditkofsky N, Pakkal M, Ballyk B. Virtual reality and cardiac anatomy: exploring immersive three-dimensional cardiac imaging, a pilot study in undergraduate medical anatomy education. Clin Anat. 2019;32(2):238-43.
https://doi.org/10.1002/ca.23292
36. Kim D. Practical applications of VR in education: an example of anatomy practice. Proceedings of the Korean Surgical Society; 2022 May 27-28; Gwangju, Korea. Seoul: Korean Surgical Society; 2022
41. Rao SJ, Isath A, Krishnan P, Tangsrivimol JA, Virk HU, Wang Z, et al. ChatGPT: a conceptual review of applications and utility in the field of medicine. J Med Syst. 2024;48(1):59.
https://doi.org/10.1007/s10916-024-02075-x
42. Mell P, Grance T. The NIST definition of cloud computing: recommendations of the National Institute of Standards and Technology. Gaithersburg (MD): National Institute of Standards and Technology; 2011.
44. Paiva PV, Machado LD, Valenca AM, De Moraes RM, Batista TV. Enhancing collaboration on a cloud-based CVE for supporting surgical education. Proceedings of the 2016 XVIII Symposium on Virtual and Augmented Reality (SVR); 2016 Jun 21-24; Gramado, Brazil. Piscataway (NJ): IEEE; 2016. p. 29-36.
https://doi.org/10.1109/SVR.2016.16
48. Wijewickrema S, Zhou Y, Ioannou I, Copson B, Piromchai P, Yu C, et al. Presentation of automated procedural guidance in surgical simulation: results of two randomised controlled trials. J Laryngol Otol. 2018;132(3):257-63.
https://doi.org/10.1017/S0022215117002626
52. Gravel J, D’Amours-Gravel M, Osmanlliu E. Learning to fake it: limited responses and fabricated references provided by ChatGPT for medical questions. Mayo Clin Proc Digit Health. 2023;1(3):226-34.
https://doi.org/10.1016/j.mcpdig.2023.05.004
53. Han T, Adams LC, Papaioannou JM, Grundmann P, Oberhauser T, Loser A, et al. MedAlpaca: an open-source collection of medical conversational AI models and training data. arXiv [Preprint]. 2023 Apr 14.
https://doi.org/10.48550/arXiv.2304.08247